martes, 23 de septiembre de 2008

PERMUTACIONES

En matemáticas, dado un conjunto finito con todos sus elementos diferentes, llamamos permutación a cada una de las posibles ordenaciones de los elementos de dicho conjunto.
Por ejemplo, en el conjunto {1,2,3}, cada ordenación posible de sus elementos, sin repetirlos, es una permutación. Existe un total de 6 permutaciones para estos elementos: "1,2,3", "1,3,2", "2,1,3", "2,3,1", "3,1,2" y "3,2,1".
La noción de permutación suele aparecer en dos contextos:
Como noción fundamental de combinatoria, centrándonos en el problema de su recuento.
En teoría de grupos, al definir nociones de simetría.

La permutación antes citada "1,3,2" puede verse como la imagen de una aplicación σ que lleva la lista inicial de objetos (1, 2, 3) en la lista de objetos reordenados (1, 3, 2). De este modo σ(1)=1, σ(2)=3 y σ(3)=2. También podemos definir a la permutación como la propia aplicación σ.
COMENTARIO:
Una permutacion es un arreglo ordenado de objetivos, es la manera de como se arregla un conjunto dado.

No hay comentarios: