El uso extendido de la distribución normal en las aplicaciones estadísticas puede explicarse, además, por otras razones. Muchos de los procedimientos estadísticos habitualmente utilizados asumen la normalidad de los datos observados. Aunque muchas de estas técnicas no son demasiado sensibles a desviaciones de la normal y, en general, esta hipótesis puede obviarse cuando se dispone de un número suficiente de datos, resulta recomendable contrastar siempre si se puede asumir o no una distribución normal. La simple exploración visual de los datos puede sugerir la forma de su distribución. No obstante, existen otras medidas, gráficos de normalidad y contrastes de hipótesis que pueden ayudarnos a decidir, de un modo más riguroso, si la muestra de la que se dispone procede o no de una distribución normal. Cuando los datos no sean normales, podremos o bien transformarlos8 o emplear otros métodos estadísticos que no exijan este tipo de restricciones (los llamados métodos no paramétricos).
La distribución normal fue reconocida por primera vez por el francés Abraham de Moivre (1667-1754). Posteriormente, Carl Friedrich Gauss (1777-1855) elaboró desarrollos más profundos y formuló la ecuación de la curva; de ahí que también se la conozca, más comúnmente, como la "campana de Gauss". La distribución de una variable normal está completamente determinada por dos parámetros, su media y su desviación estándar.
La distribución normal es muy importante por lo siguiente:
1. Es la distribución a la que se aproximan la mayoría de los fenómenos físicos, Químicos, Biólogicos
2. Se ha tomado como base en la inferencia estadística paramétrica
3. Otras distribuciones bajo ciertas circunstancias se pueden aproximar a la normal
4. Es la base para definir otras distribuciones de importancia tales como la Chi cuadrada, t de Student y F de Fisher.
CARACTERISTICAS DE LA DISTRIBUCION NORMAL
1. Forma
Es una campana simétrica con respecto a su centro
La curva tiene un solo pico; por tanto, es unimodal.
La media de una población distribuida normalmente cae en el centro de su curva normal.
Debido a la simetría de la distribución normal de probabilidad, la mediana y la moda de la distribución se encuentran también en el centro; en consecuencia, para una curva normal, la media, la mediana y la moda tienen el mismo valor.
Los dos extremos de la distribución normal de probabilidad se extienden indefinidamente y nunca tocan el eje horizontal
2. Parámetros
Está caracterizada por dos parámetros
a).- Parámetro de localización: La media
b).- Parámetro de forma: La varianza
3. Función de densidad
Para determinar las áreas bajo la curva de función de densidad normal se requiere integrar la ecuación anterior, desafortunadamente no existe una solución exacta para la integral, por lo que su evaluación solamente puede obtenerse utilizando métodos de aproximación. Por esta razón, se aprovechó la propiedad de transformación de cualquier curva normal a la NORMAL ESTANDAR utilizando una nueva variable aleatoria Z llamada variable aleatoria normal estándar.
COMENTARIO:
Es una grafica en forma de campana que se utiliza para calcular el porcentaje de dicho problema, en dicha grafica se puede representar la media y el dato x, tambien recibe el nombre de campana de gauss.
No todo fenomeno va a ser normal ya que para ello existe en la grafica en la cual se ve de que forma se queda la curva, sirve para ver la simetria de los datos.
No hay comentarios:
Publicar un comentario